Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 041, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.041
(Mi sigma906)
 

This article is cited in 5 scientific papers (total in 5 papers)

A Notable Relation between $N$-Qubit and $2^{N-1}$-Qubit Pauli Groups via Binary $\mathrm{LGr}(N,2N)$

Frédéric Holwecka, Metod Sanigab, Péter Lévayc

a Laboratoire IRTES/M3M, Université de technologie de Belfort-Montbéliard, F-90010 Belfort, France
b Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
c Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Budafoki út. 8, H-1521, Budapest, Hungary
Full-text PDF (459 kB) Citations (5)
References:
Abstract: Employing the fact that the geometry of the $N$-qubit ($N \geq 2$) Pauli group is embodied in the structure of the symplectic polar space $\mathcal{W}(2N-1,2)$ and using properties of the Lagrangian Grassmannian $\mathrm{LGr}(N,2N)$ defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the $N$-qubit Pauli group and a certain subset of elements of the $2^{N-1}$-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases $N=3$ (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and $N=4$ are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space $\mathrm{PG}(2^N-1,2)$ of the $2^{N-1}$-qubit Pauli group in terms of $G$-orbits, where $G \equiv \mathrm{SL}(2,2)\times \mathrm{SL}(2,2)\times\cdots\times \mathrm{SL}(2,2)\rtimes S_N$, to decompose $\underline{\pi}(\mathrm{LGr}(N,2N))$ into non-equivalent orbits. This leads to a partition of $\mathrm{LGr}(N,2N)$ into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups.
Keywords: multi-qubit Pauli groups; symplectic polar spaces $\mathcal{W}(2N-1,2)$; Lagrangian Grassmannians $\mathrm{LGr}(N,2N)$ over the smallest Galois field.
Received: November 14, 2013; in final form April 2, 2014; Published online April 8, 2014
Bibliographic databases:
Document Type: Article
MSC: 05B25; 51E20; 81P99
Language: English
Citation: Frédéric Holweck, Metod Saniga, Péter Lévay, “A Notable Relation between $N$-Qubit and $2^{N-1}$-Qubit Pauli Groups via Binary $\mathrm{LGr}(N,2N)$”, SIGMA, 10 (2014), 041, 16 pp.
Citation in format AMSBIB
\Bibitem{HolSanLev14}
\by Fr\'ed\'eric~Holweck, Metod~Saniga, P\'eter~L\'evay
\paper A Notable Relation between $N$-Qubit and $2^{N-1}$-Qubit Pauli Groups via Binary $\mathrm{LGr}(N,2N)$
\jour SIGMA
\yr 2014
\vol 10
\papernumber 041
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma906}
\crossref{https://doi.org/10.3842/SIGMA.2014.041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210594}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334734100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898445741}
Linking options:
  • https://www.mathnet.ru/eng/sigma906
  • https://www.mathnet.ru/eng/sigma/v10/p41
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :48
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024