|
This article is cited in 7 scientific papers (total in 7 papers)
Fusion Procedure for Cyclotomic Hecke Algebras
Oleg V. Ogievetskyabc, Loïc Poulain d'Andecyd a Center of Theoretical Physics, Aix Marseille Université, CNRS, UMR 7332, 13288 Marseille, France
b On leave of absence from P. N. Lebedev Physical Institute, Leninsky Pr. 53, 117924 Moscow, Russia
c Université de Toulon, CNRS, UMR 7332, 83957 La Garde, France
d Mathematics Laboratory of Versailles, LMV, CNRS UMR 8100,
Versailles Saint-Quentin University, 45 avenue des Etas-Unis,
78035 Versailles Cedex, France
Abstract:
A complete system of primitive pairwise orthogonal idempotents for cyclotomic Hecke algebras is constructed by consecutive evaluations of a rational function in several variables on quantum contents of multi-tableaux. This function is a product of two terms, one of which depends only on the shape of the multi-tableau and is proportional to the inverse of the corresponding Schur element.
Keywords:
cyclotomic Hecke algebras; fusion formula; idempotents; Young tableaux; Jucys–Murphy elements; Schur element.
Received: September 28, 2013; in final form March 29, 2014; Published online April 1, 2014
Citation:
Oleg V. Ogievetsky, Loïc Poulain d'Andecy, “Fusion Procedure for Cyclotomic Hecke Algebras”, SIGMA, 10 (2014), 039, 13 pp.
Linking options:
https://www.mathnet.ru/eng/sigma904 https://www.mathnet.ru/eng/sigma/v10/p39
|
Statistics & downloads: |
Abstract page: | 263 | Full-text PDF : | 39 | References: | 45 |
|