Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 033, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.033
(Mi sigma898)
 

This article is cited in 6 scientific papers (total in 6 papers)

Hyperkähler Manifolds of Curves in Twistor Spaces

Roger Bielawski

Institut für Differentialgeometrie, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
Full-text PDF (392 kB) Citations (6)
References:
Abstract: We discuss hypercomplex and hyperkähler structures obtained from higher degree curves in complex spaces fibring over ${\mathbb{P}}^1$.
Keywords: hyperkähler metrics; hypercomplex structures; twistor methods; projective curves.
Received: November 6, 2013; in final form March 19, 2014; Published online March 28, 2014
Bibliographic databases:
Document Type: Article
Language: English
Citation: Roger Bielawski, “Hyperkähler Manifolds of Curves in Twistor Spaces”, SIGMA, 10 (2014), 033, 13 pp.
Citation in format AMSBIB
\Bibitem{Bie14}
\by Roger~Bielawski
\paper Hyperk\"ahler Manifolds of Curves in Twistor Spaces
\jour SIGMA
\yr 2014
\vol 10
\papernumber 033
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma898}
\crossref{https://doi.org/10.3842/SIGMA.2014.033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210602}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334687000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897542127}
Linking options:
  • https://www.mathnet.ru/eng/sigma898
  • https://www.mathnet.ru/eng/sigma/v10/p33
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :41
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024