Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 029, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.029
(Mi sigma894)
 

On Projections in the Noncommutative 2-Torus Algebra

Michał Eckstein

Faculty of Mathematics and Computer Science, Jagellonian University, ul.  Łojasiewicza 6, 30-348 Kraków, Poland
References:
Abstract: We investigate a set of functional equations defining a projection in the noncommutative 2-torus algebra $A_{\theta}$. The exact solutions of these provide various generalisations of the Powers–Rieffel projection. By identifying the corresponding $K_0(A_{\theta})$ classes we get an insight into the structure of projections in $A_{\theta}$.
Keywords: noncommutative torus; projections; noncommutative solitons.
Received: December 9, 2013; in final form March 16, 2014; Published online March 23, 2014
Bibliographic databases:
Document Type: Article
Language: English
Citation: Michał Eckstein, “On Projections in the Noncommutative 2-Torus Algebra”, SIGMA, 10 (2014), 029, 14 pp.
Citation in format AMSBIB
\Bibitem{Eck14}
\by Micha{\l}~Eckstein
\paper On Projections in the Noncommutative 2-Torus Algebra
\jour SIGMA
\yr 2014
\vol 10
\papernumber 029
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma894}
\crossref{https://doi.org/10.3842/SIGMA.2014.029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210606}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334593400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897106699}
Linking options:
  • https://www.mathnet.ru/eng/sigma894
  • https://www.mathnet.ru/eng/sigma/v10/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :40
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024