Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 025, 24 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.025
(Mi sigma890)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Characterization of Invariant Connections

Maximilian Hanusch

Department of Mathematics, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
Full-text PDF (547 kB) Citations (3)
References:
Abstract: Given a principal fibre bundle with structure group $S$ and a fibre transitive Lie group $G$ of automorphisms thereon, Wang's theorem identifies the invariant connections with certain linear maps $\psi\colon \mathfrak{g}\rightarrow \mathfrak{s}$. In the present paper we prove an extension of this theorem that applies to the general situation where $G$ acts non-transitively on the base manifold. We consider several special cases of the general theorem including the result of Harnad, Shnider and Vinet which applies to the situation where $G$ admits only one orbit type. Along the way we give applications to loop quantum gravity.
Keywords: invariant connections; principal fibre bundles; loop quantum gravity; symmetry reduction.
Received: December 9, 2013; in final form March 10, 2014; Published online March 15, 2014
Bibliographic databases:
Document Type: Article
Language: English
Citation: Maximilian Hanusch, “A Characterization of Invariant Connections”, SIGMA, 10 (2014), 025, 24 pp.
Citation in format AMSBIB
\Bibitem{Han14}
\by Maximilian~Hanusch
\paper A Characterization of Invariant Connections
\jour SIGMA
\yr 2014
\vol 10
\papernumber 025
\totalpages 24
\mathnet{http://mi.mathnet.ru/sigma890}
\crossref{https://doi.org/10.3842/SIGMA.2014.025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210610}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334518200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897841940}
Linking options:
  • https://www.mathnet.ru/eng/sigma890
  • https://www.mathnet.ru/eng/sigma/v10/p25
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :54
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024