Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 022, 26 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.022
(Mi sigma887)
 

This article is cited in 11 scientific papers (total in 11 papers)

The Real $K$-Theory of Compact Lie Groups

Chi-Kwong Fok

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
References:
Abstract: Let $G$ be a compact, connected, and simply-connected Lie group, equipped with a Lie group involution $\sigma_G$ and viewed as a $G$-space with the conjugation action. In this paper, we present a description of the ring structure of the (equivariant) $KR$-theory of $(G, \sigma_G)$ by drawing on previous results on the module structure of the $KR$-theory and the ring structure of the equivariant $K$-theory.
Keywords: $KR$-theory; compact Lie groups; Real representations; Real equivariant formality.
Received: August 22, 2013; in final form March 6, 2014; Published online March 11, 2014
Bibliographic databases:
Document Type: Article
MSC: 19L47; 57T10
Language: English
Citation: Chi-Kwong Fok, “The Real $K$-Theory of Compact Lie Groups”, SIGMA, 10 (2014), 022, 26 pp.
Citation in format AMSBIB
\Bibitem{Fok14}
\by Chi-Kwong~Fok
\paper The Real $K$-Theory of Compact Lie Groups
\jour SIGMA
\yr 2014
\vol 10
\papernumber 022
\totalpages 26
\mathnet{http://mi.mathnet.ru/sigma887}
\crossref{https://doi.org/10.3842/SIGMA.2014.022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210613}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334517500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896446991}
Linking options:
  • https://www.mathnet.ru/eng/sigma887
  • https://www.mathnet.ru/eng/sigma/v10/p22
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :64
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024