Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 019, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.019
(Mi sigma884)
 

This article is cited in 4 scientific papers (total in 4 papers)

Tight Frame with Hahn and Krawtchouk Polynomials of Several Variables

Yuan Xu

Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222, USA
Full-text PDF (457 kB) Citations (4)
References:
Abstract: Finite tight frames for polynomial subspaces are constructed using monic Hahn polynomials and Krawtchouk polynomials of several variables. Based on these polynomial frames, two methods for constructing tight frames for the Euclidean spaces are designed. With ${\mathsf r}(d,n):= \binom{n+d-1}{n}$, the first method generates, for each $m \ge n$, two families of tight frames in ${\mathbb R}^{{\mathsf r}(d,n)}$ with ${\mathsf r}(d+1,m)$ elements. The second method generates a tight frame in ${\mathbb R}^{{\mathsf r}(d,N)}$ with $1 + N \times{\mathsf r}(d+1, N)$ vectors. All frame elements are given in explicit formulas.
Keywords: Jacobi polynomials; simplex; Hahn polynomials; Krawtchouk polynomials; several variables; tight frame.
Received: November 6, 2013; in final form February 25, 2014; Published online March 3, 2014
Bibliographic databases:
Document Type: Article
MSC: 33C50; 42C15
Language: English
Citation: Yuan Xu, “Tight Frame with Hahn and Krawtchouk Polynomials of Several Variables”, SIGMA, 10 (2014), 019, 19 pp.
Citation in format AMSBIB
\Bibitem{Xu14}
\by Yuan~Xu
\paper Tight Frame with Hahn and Krawtchouk Polynomials of Several Variables
\jour SIGMA
\yr 2014
\vol 10
\papernumber 019
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma884}
\crossref{https://doi.org/10.3842/SIGMA.2014.019}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210616}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334516900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896461429}
Linking options:
  • https://www.mathnet.ru/eng/sigma884
  • https://www.mathnet.ru/eng/sigma/v10/p19
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :41
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024