Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 017, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.017
(Mi sigma882)
 

Dynamics of an Inverting Tippe Top

Stefan Rauch-Wojciechowski, Nils Rutstam

Department of Mathematics, Linköping University, Linköping, Sweden
References:
Abstract: The existing results about inversion of a tippe top (TT) establish stability of asymptotic solutions and prove inversion by using the LaSalle theorem. Dynamical behaviour of inverting solutions has only been explored numerically and with the use of certain perturbation techniques. The aim of this paper is to provide analytical arguments showing oscillatory behaviour of TT through the use of the main equation for the TT. The main equation describes time evolution of the inclination angle $\theta(t)$ within an effective potential $V(\cos\theta,D(t),\lambda)$ that is deforming during the inversion. We prove here that $V(\cos\theta,D(t),\lambda)$ has only one minimum which (if Jellett's integral is above a threshold value $\lambda>\lambda_{\text{thres}}=\frac{\sqrt{mgR^3I_3\alpha}(1+\alpha)^2}{\sqrt{1+\alpha-\gamma}}$ and $1-\alpha^2<\gamma=\frac{I_1}{I_3}<1$ holds) moves during the inversion from a neighbourhood of $\theta=0$ to a neighbourhood of $\theta=\pi$. This allows us to conclude that $\theta(t)$ is an oscillatory function. Estimates for a maximal value of the oscillation period of $\theta(t)$ are given.
Keywords: tippe top; rigid body; nonholonomic mechanics; integrals of motion; gliding friction.
Received: September 5, 2013; in final form February 18, 2014; Published online February 27, 2014
Bibliographic databases:
Document Type: Article
Language: English
Citation: Stefan Rauch-Wojciechowski, Nils Rutstam, “Dynamics of an Inverting Tippe Top”, SIGMA, 10 (2014), 017, 18 pp.
Citation in format AMSBIB
\Bibitem{RauRut14}
\by Stefan~Rauch-Wojciechowski, Nils~Rutstam
\paper Dynamics of an Inverting Tippe Top
\jour SIGMA
\yr 2014
\vol 10
\papernumber 017
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma882}
\crossref{https://doi.org/10.3842/SIGMA.2014.017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210618}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334516500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896463808}
Linking options:
  • https://www.mathnet.ru/eng/sigma882
  • https://www.mathnet.ru/eng/sigma/v10/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :51
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024