Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 015, 8 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.015
(Mi sigma880)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the Smoothness of the Noncommutative Pillow and Quantum Teardrops

Tomasz Brzeziński

Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, UK
Full-text PDF (370 kB) Citations (7)
References:
Abstract: Recent results by Krähmer [Israel J. Math. 189 (2012), 237–266] on smoothness of Hopf–Galois extensions and by Liu [arxiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [Internat. J. Math. 2 (1991), 139–166], quantum teardrops ${\mathcal O}({\mathbb W}{\mathbb P}_q(1,l))$ [Comm. Math. Phys. 316 (2012), 151–170], quantum lens spaces ${\mathcal O}(L_q(l;1,l))$ [Pacific J. Math. 211 (2003), 249–263], the quantum Seifert manifold ${\mathcal O}(\Sigma_q^3)$ [J. Geom. Phys. 62 (2012), 1097–1107], quantum real weighted projective planes ${\mathcal O}({\mathbb R}{\mathbb P}_q^2(l;\pm))$ [PoS Proc. Sci. (2012), PoS(CORFU2011), 055, 10 pages] and quantum Seifert lens spaces ${\mathcal O}(\Sigma_q^3(l;-))$ [Axioms 1 (2012), 201–225] are homologically smooth in the sense that as their own bimodules they admit finitely generated projective resolutions of finite length.
Keywords: smooth algebra; generalized Weyl algebra; strongly graded algebra; noncommutative pillow; quantum teardrop; quantum lens space; quantum real weighted projective plane.
Received: December 3, 2013; in final form February 9, 2014; Published online February 14, 2014
Bibliographic databases:
Document Type: Article
MSC: 58B32; 58B34
Language: English
Citation: Tomasz Brzeziński, “On the Smoothness of the Noncommutative Pillow and Quantum Teardrops”, SIGMA, 10 (2014), 015, 8 pp.
Citation in format AMSBIB
\Bibitem{Brz14}
\by Tomasz~Brzezi{\'n}ski
\paper On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
\jour SIGMA
\yr 2014
\vol 10
\papernumber 015
\totalpages 8
\mathnet{http://mi.mathnet.ru/sigma880}
\crossref{https://doi.org/10.3842/SIGMA.2014.015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210620}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334516000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894538612}
Linking options:
  • https://www.mathnet.ru/eng/sigma880
  • https://www.mathnet.ru/eng/sigma/v10/p15
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :46
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024