Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 013, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.013
(Mi sigma878)
 

Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group

Indranil Biswasa, Tomás L. Gómezb

a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
b Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Nicolás Cabrera 15, Campus Cantoblanco UAM, 28049 Madrid, Spain
References:
Abstract: We investigate principal $G$-bundles on a compact Kähler manifold, where $G$ is a complex algebraic group such that the connected component of it containing the identity element is reductive. Defining (semi)stability of such bundles, it is shown that a principal $G$-bundle $E_G$ admits an Einstein–Hermitian connection if and only if $E_G$ is polystable. We give an equivalent formulation of the (semi)stability condition. A question is to compare this definition with that of [Gómez T. L., Langer A., Schmitt A. H. W., Sols I., Ramanujan Math. Soc. Lect. Notes Ser., Vol. 10, Ramanujan Math. Soc., Mysore, 2010, 281–371].
Keywords: Einstein–Hermitian connection; principal bundle; parabolic subgroup; (semi)stability.
Received: October 29, 2013; in final form February 7, 2014; Published online February 12, 2014
Bibliographic databases:
Document Type: Article
MSC: 53C07; 14F05
Language: English
Citation: Indranil Biswas, Tomás L. Gómez, “Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group”, SIGMA, 10 (2014), 013, 7 pp.
Citation in format AMSBIB
\Bibitem{BisGom14}
\by Indranil~Biswas, Tom\'as~L.~G\'omez
\paper Semistability of Principal Bundles on a~K\"ahler Manifold with a~Non-Connected Structure Group
\jour SIGMA
\yr 2014
\vol 10
\papernumber 013
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma878}
\crossref{https://doi.org/10.3842/SIGMA.2014.013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210622}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334515800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894593383}
Linking options:
  • https://www.mathnet.ru/eng/sigma878
  • https://www.mathnet.ru/eng/sigma/v10/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :51
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024