Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 012, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.012
(Mi sigma877)
 

This article is cited in 15 scientific papers (total in 15 papers)

Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable

Alexei A. Deriglazov, Andrey M. Pupasov-Maksimov

Departamento de Matemática, ICE, Universidade Federal de Juiz de Fora, MG, Brasil
References:
Abstract: Basic notions of Dirac theory of constrained systems have their analogs in differential geometry. Combination of the two approaches gives more clear understanding of both classical and quantum mechanics, when we deal with a model with complicated structure of constraints. In this work we describe and discuss the spin fiber bundle which appeared in various mechanical models where spin is described by vector-like variable.
Keywords: semiclassical description of relativistic spin; Dirac equation; theories with constraints.
Received: December 17, 2013; in final form February 4, 2014; Published online February 8, 2014
Bibliographic databases:
Document Type: Article
MSC: 53B50; 81R05; 81S05
Language: English
Citation: Alexei A. Deriglazov, Andrey M. Pupasov-Maksimov, “Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable”, SIGMA, 10 (2014), 012, 13 pp.
Citation in format AMSBIB
\Bibitem{DerPup14}
\by Alexei~A.~Deriglazov, Andrey~M.~Pupasov-Maksimov
\paper Geometric Constructions Underlying Relativistic Description~of Spin on~the~Base of Non-Grassmann Vector-Like Variable
\jour SIGMA
\yr 2014
\vol 10
\papernumber 012
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma877}
\crossref{https://doi.org/10.3842/SIGMA.2014.012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210623}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334499400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84893673983}
Linking options:
  • https://www.mathnet.ru/eng/sigma877
  • https://www.mathnet.ru/eng/sigma/v10/p12
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :77
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024