|
This article is cited in 2 scientific papers (total in 2 papers)
Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane
Carles Batllea, Joaquim Gomisb, Kiyoshi Kamimurac a Departament de Matemàtica Aplicada 4 and Institut d’Organització i Control, Universitat Politècnica de Catalunya - BarcelonaTech, EPSEVG, Av. V. Balaguer 1, 08800 Vilanova i la Geltrú, Spain
b Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
c Department of Physics, Toho University, Funabashi, Chiba 274-8510, Japan
Abstract:
We study all the symmetries of the free Schrödinger equation in the non-commutative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schrödinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.
Keywords:
non-commutative plane; Schrödinger equation; Schrödinger symmetries; higher spin symmetries.
Received: August 29, 2013; in final form January 29, 2014; Published online February 8, 2014
Citation:
Carles Batlle, Joaquim Gomis, Kiyoshi Kamimura, “Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane”, SIGMA, 10 (2014), 011, 15 pp.
Linking options:
https://www.mathnet.ru/eng/sigma876 https://www.mathnet.ru/eng/sigma/v10/p11
|
Statistics & downloads: |
Abstract page: | 320 | Full-text PDF : | 55 | References: | 62 |
|