Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2014, Volume 10, 011, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2014.011
(Mi sigma876)
 

This article is cited in 2 scientific papers (total in 2 papers)

Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane

Carles Batllea, Joaquim Gomisb, Kiyoshi Kamimurac

a Departament de Matemàtica Aplicada 4 and Institut d’Organització i Control, Universitat Politècnica de Catalunya - BarcelonaTech, EPSEVG, Av. V. Balaguer 1, 08800 Vilanova i la Geltrú, Spain
b Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
c Department of Physics, Toho University, Funabashi, Chiba 274-8510, Japan
Full-text PDF (388 kB) Citations (2)
References:
Abstract: We study all the symmetries of the free Schrödinger equation in the non-commutative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schrödinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.
Keywords: non-commutative plane; Schrödinger equation; Schrödinger symmetries; higher spin symmetries.
Received: August 29, 2013; in final form January 29, 2014; Published online February 8, 2014
Bibliographic databases:
Document Type: Article
MSC: 81R60; 81S05; 83C65
Language: English
Citation: Carles Batlle, Joaquim Gomis, Kiyoshi Kamimura, “Symmetries of the Free Schrödinger Equation in the Non-Commutative Plane”, SIGMA, 10 (2014), 011, 15 pp.
Citation in format AMSBIB
\Bibitem{BatGomKam14}
\by Carles~Batlle, Joaquim~Gomis, Kiyoshi~Kamimura
\paper Symmetries of the Free Schr\"odinger Equation in the Non-Commutative Plane
\jour SIGMA
\yr 2014
\vol 10
\papernumber 011
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma876}
\crossref{https://doi.org/10.3842/SIGMA.2014.011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3210624}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334499300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84893654711}
Linking options:
  • https://www.mathnet.ru/eng/sigma876
  • https://www.mathnet.ru/eng/sigma/v10/p11
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :55
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024