Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 081, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.081
(Mi sigma864)
 

This article is cited in 5 scientific papers (total in 5 papers)

Representation Theory of Quantized Enveloping Algebras with Interpolating Real Structure

Kenny De Commer

Department of Mathematics, University of Cergy-Pontoise, UMR CNRS 8088, F-95000 Cergy-Pontoise, France
Full-text PDF (518 kB) Citations (5)
References:
Abstract: Let $\mathfrak{g}$ be a compact simple Lie algebra. We modify the quantized enveloping $^*$-algebra associated to $\mathfrak{g}$ by a real-valued character on the positive part of the root lattice. We study the ensuing Verma module theory, and the associated quotients of these modified quantized enveloping $^*$-algebras. Restricting to the locally finite part by means of a natural adjoint action, we obtain in particular examples of quantum homogeneous spaces in the operator algebraic setting.
Keywords: compact quantum homogeneous spaces; quantized universal enveloping algebras; Hopf–Galois theory; Verma modules.
Received: August 18, 2013; in final form December 18, 2013; Published online December 24, 2013
Bibliographic databases:
Document Type: Article
MSC: 17B37; 20G42; 46L65
Language: English
Citation: Kenny De Commer, “Representation Theory of Quantized Enveloping Algebras with Interpolating Real Structure”, SIGMA, 9 (2013), 081, 20 pp.
Citation in format AMSBIB
\Bibitem{De 13}
\by Kenny~De~Commer
\paper Representation Theory of Quantized Enveloping Algebras with Interpolating Real Structure
\jour SIGMA
\yr 2013
\vol 9
\papernumber 081
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma864}
\crossref{https://doi.org/10.3842/SIGMA.2013.081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3208147}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329209600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891401553}
Linking options:
  • https://www.mathnet.ru/eng/sigma864
  • https://www.mathnet.ru/eng/sigma/v9/p81
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024