Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 080, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.080
(Mi sigma863)
 

This article is cited in 2 scientific papers (total in 2 papers)

Dirac Operators on Noncommutative Curved Spacetimes

Alexander Schenkela, Christoph F. Uhlemannb

a Fachgruppe Mathematik, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
b Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
Full-text PDF (459 kB) Citations (2)
References:
Abstract: We study the notion of a Dirac operator in the framework of twist-deformed noncommutative geometry. We provide a number of well-motivated candidate constructions and propose a minimal set of axioms that a noncommutative Dirac operator should satisfy. These criteria turn out to be restrictive, but they do not fix a unique construction: two of our operators generally satisfy the axioms, and we provide an explicit example where they are inequivalent. For highly symmetric spacetimes with Drinfeld twists constructed from sufficiently many Killing vector fields, all of our operators coincide. For general noncommutative curved spacetimes we find that demanding formal self-adjointness as an additional condition singles out a preferred choice among our candidates. Based on this noncommutative Dirac operator we construct a quantum field theory of Dirac fields. In the last part we study noncommutative Dirac operators on deformed Minkowski and AdS spacetimes as explicit examples.
Keywords: Dirac operators; Dirac fields; Drinfeld twists; deformation quantization; noncommutative quantum field theory; quantum field theory on curved spacetimes.
Received: August 9, 2013; in final form December 11, 2013; Published online December 15, 2013
Bibliographic databases:
Document Type: Article
MSC: 81T75; 81T20; 83C65
Language: English
Citation: Alexander Schenkel, Christoph F. Uhlemann, “Dirac Operators on Noncommutative Curved Spacetimes”, SIGMA, 9 (2013), 080, 19 pp.
Citation in format AMSBIB
\Bibitem{SchUhl13}
\by Alexander~Schenkel, Christoph~F.~Uhlemann
\paper Dirac Operators on Noncommutative Curved Spacetimes
\jour SIGMA
\yr 2013
\vol 9
\papernumber 080
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma863}
\crossref{https://doi.org/10.3842/SIGMA.2013.080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3208146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328328100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890368055}
Linking options:
  • https://www.mathnet.ru/eng/sigma863
  • https://www.mathnet.ru/eng/sigma/v9/p80
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:608
    Full-text PDF :194
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024