Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 077, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.077
(Mi sigma860)
 

This article is cited in 2 scientific papers (total in 2 papers)

Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials

Jan Felipe Van Diejen, Erdal Emsiz

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
Full-text PDF (351 kB) Citations (2)
References:
Abstract: We present a semi-infinite $q$-boson system endowed with a four-parameter boundary interaction. The $n$-particle Hamiltonian is diagonalized by generalized Hall–Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald–Koornwinder polynomials and were recently studied in detail by Venkateswaran.
Keywords: Hall–Littlewood functions; $q$-bosons; boundary fields; hyperoctahedral symmetry.
Received: September 27, 2013; in final form November 26, 2013; Published online December 4, 2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jan Felipe Van Diejen, Erdal Emsiz, “Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall–Littlewood Polynomials”, SIGMA, 9 (2013), 077, 12 pp.
Citation in format AMSBIB
\Bibitem{VanEms13}
\by Jan~Felipe~Van Diejen, Erdal~Emsiz
\paper Boundary Interactions for the Semi-Infinite $q$-Boson System and Hyperoctahedral Hall--Littlewood Polynomials
\jour SIGMA
\yr 2013
\vol 9
\papernumber 077
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma860}
\crossref{https://doi.org/10.3842/SIGMA.2013.077}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3141545}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327881600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889601966}
Linking options:
  • https://www.mathnet.ru/eng/sigma860
  • https://www.mathnet.ru/eng/sigma/v9/p77
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024