Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 072, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.072
(Mi sigma855)
 

This article is cited in 86 scientific papers (total in 86 papers)

Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz

Samuel Belliard, Nicolas Crampé

Laboratoire Charles Coulomb UMR 5221, CNRS-Université Montpellier 2, F-34095 Montpellier, France
References:
Abstract: We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar to the ones obtained in the periodic case or with diagonal boundaries.
Keywords: algebraic Bethe ansatz; integrable spin chain; boundary conditions.
Received: September 29, 2013; in final form November 19, 2013; Published online November 22, 2013
Bibliographic databases:
Document Type: Article
MSC: 82B23; 81R12
Language: English
Citation: Samuel Belliard, Nicolas Crampé, “Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz”, SIGMA, 9 (2013), 072, 12 pp.
Citation in format AMSBIB
\Bibitem{BelCra13}
\by Samuel~Belliard, Nicolas~Cramp\'e
\paper Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz
\jour SIGMA
\yr 2013
\vol 9
\papernumber 072
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma855}
\crossref{https://doi.org/10.3842/SIGMA.2013.072}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3141540}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327734600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888153521}
Linking options:
  • https://www.mathnet.ru/eng/sigma855
  • https://www.mathnet.ru/eng/sigma/v9/p72
  • This publication is cited in the following 86 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:615
    Full-text PDF :124
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024