Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 071, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.071
(Mi sigma854)
 

This article is cited in 31 scientific papers (total in 31 papers)

Levi-Civita's Theorem for Noncommutative Tori

Jonathan Rosenberg

Department of Mathematics, University of Maryland, College Park, MD 20742, USA
References:
Abstract: We show how to define Riemannian metrics and connections on a noncommutative torus in such a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection holds. The major novelty is that we need to use two different notions of noncommutative vector field. Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas.
Keywords: noncommutative torus; noncommutative vector field; Riemannian metric; Levi-Civita connection; Riemannian curvature; Gauss–Bonnet theorem.
Received: July 26, 2013; in final form November 19, 2013; Published online November 21, 2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jonathan Rosenberg, “Levi-Civita's Theorem for Noncommutative Tori”, SIGMA, 9 (2013), 071, 9 pp.
Citation in format AMSBIB
\Bibitem{Ros13}
\by Jonathan~Rosenberg
\paper Levi-Civita's Theorem for Noncommutative Tori
\jour SIGMA
\yr 2013
\vol 9
\papernumber 071
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma854}
\crossref{https://doi.org/10.3842/SIGMA.2013.071}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3141539}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327734100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888187549}
Linking options:
  • https://www.mathnet.ru/eng/sigma854
  • https://www.mathnet.ru/eng/sigma/v9/p71
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :46
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024