Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 062, 25 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.062
(Mi sigma845)
 

This article is cited in 1 scientific paper (total in 1 paper)

Period Matrices of Real Riemann Surfaces and Fundamental Domains

Pietro Giavedoni

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
Full-text PDF (508 kB) Citations (1)
References:
Abstract: For some positive integers $g$ and $n$ we consider a subgroup $\mathbb{G}_{g,n}$ of the $2g$-dimensional modular group keeping invariant a certain locus $\mathcal{W}_{g,n}$ in the Siegel upper half plane of degree $g$. We address the problem of describing a fundamental domain for the modular action of the subgroup on $\mathcal{W}_{g,n}$. Our motivation comes from geometry: $g$ and $n$ represent the genus and the number of ovals of a generic real Riemann surface of separated type; the locus $\mathcal{W}_{g,n}$ contains the corresponding period matrix computed with respect to some specific basis in the homology. In this paper we formulate a general procedure to solve the problem when $g$ is even and $n$ equals one. For $g$ equal to two or four the explicit calculations are worked out in full detail.
Keywords: real Riemann surfaces; period matrices; modular action; fundamental domain; reduction theory of positive definite quadratic forms.
Received: March 1, 2013; in final form October 14, 2013; Published online October 22, 2013
Bibliographic databases:
Document Type: Article
MSC: 14P05; 57S30; 11F46
Language: English
Citation: Pietro Giavedoni, “Period Matrices of Real Riemann Surfaces and Fundamental Domains”, SIGMA, 9 (2013), 062, 25 pp.
Citation in format AMSBIB
\Bibitem{Gia13}
\by Pietro~Giavedoni
\paper Period Matrices of Real Riemann Surfaces and Fundamental Domains
\jour SIGMA
\yr 2013
\vol 9
\papernumber 062
\totalpages 25
\mathnet{http://mi.mathnet.ru/sigma845}
\crossref{https://doi.org/10.3842/SIGMA.2013.062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3141530}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325963900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886022302}
Linking options:
  • https://www.mathnet.ru/eng/sigma845
  • https://www.mathnet.ru/eng/sigma/v9/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:354
    Full-text PDF :73
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024