Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 060, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.060
(Mi sigma843)
 

This article is cited in 7 scientific papers (total in 7 papers)

Generalized Fuzzy Torus and its Modular Properties

Paul Schreivogl, Harold Steinacker

Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
Full-text PDF (533 kB) Citations (7)
References:
Abstract: We consider a generalization of the basic fuzzy torus to a fuzzy torus with non-trivial modular parameter, based on a finite matrix algebra. We discuss the modular properties of this fuzzy torus, and compute the matrix Laplacian for a scalar field. In the semi-classical limit, the generalized fuzzy torus can be used to approximate a generic commutative torus represented by two generic vectors in the complex plane, with generic modular parameter $\tau$. The effective classical geometry and the spectrum of the Laplacian are correctly reproduced in the limit. The spectrum of a matrix Dirac operator is also computed.
Keywords: fuzzy spaces; noncommutative geometry; matrix models.
Received: June 19, 2013; in final form October 11, 2013; Published online October 17, 2013
Bibliographic databases:
Document Type: Article
MSC: 81R60; 81T75; 81T30
Language: English
Citation: Paul Schreivogl, Harold Steinacker, “Generalized Fuzzy Torus and its Modular Properties”, SIGMA, 9 (2013), 060, 23 pp.
Citation in format AMSBIB
\Bibitem{SchSte13}
\by Paul~Schreivogl, Harold~Steinacker
\paper Generalized Fuzzy Torus and its Modular Properties
\jour SIGMA
\yr 2013
\vol 9
\papernumber 060
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma843}
\crossref{https://doi.org/10.3842/SIGMA.2013.060}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3141528}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325846100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885925768}
Linking options:
  • https://www.mathnet.ru/eng/sigma843
  • https://www.mathnet.ru/eng/sigma/v9/p60
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :35
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024