Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 055, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.055
(Mi sigma838)
 

This article is cited in 5 scientific papers (total in 5 papers)

$\mathfrak{spo}(2|2)$-Equivariant Quantizations on the Supercircle $S^{1|2}$

Najla Melloulia, Aboubacar Nibirantizab, Fabian Radouxb

a University of Sfax, Higher Institute of Biotechnology, Route de la Soukra km 4, B.P. № 1175, 3038 Sfax, Tunisia
b University of Liège, Institute of Mathematics, Grande Traverse, 12-B37, B-4000 Liège, Belgium
Full-text PDF (474 kB) Citations (5)
References:
Abstract: We consider the space of differential operators $\mathcal{D}_{\lambda\mu}$ acting between $\lambda$- and $\mu$-densities defined on $S^{1|2}$ endowed with its standard contact structure. This contact structure allows one to define a filtration on $\mathcal{D}_{\lambda\mu}$ which is finer than the classical one, obtained by writting a differential operator in terms of the partial derivatives with respect to the different coordinates. The space $\mathcal{D}_{\lambda\mu}$ and the associated graded space of symbols $\mathcal{S}_{\delta}$ ($\delta=\mu-\lambda$) can be considered as $\mathfrak{spo}(2|2)$-modules, where $\mathfrak{spo}(2|2)$ is the Lie superalgebra of contact projective vector fields on $S^{1|2}$. We show in this paper that there is a unique isomorphism of $\mathfrak{spo}(2|2)$-modules between $\mathcal{S}_{\delta}$ and $\mathcal{D}_{\lambda\mu}$ that preserves the principal symbol (i.e.an {$\mathfrak{spo}(2|2)$-equivariant} quantization) for some values of $\delta$ called non-critical values. Moreover, we give an explicit formula for this isomorphism, extending in this way the results of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators. The method used here to build the $\mathfrak{spo}(2|2)$-equivariant quantization is the same as the one used in [Mathonet P., Radoux F., Lett. Math. Phys. 98 (2011), 311–331] to prove the existence of a $\mathfrak{pgl}(p+1|q)$-equivariant quantization on $\mathbb{R}^{p|q}$.
Keywords: equivariant quantization; supergeometry; contact geometry; orthosymplectic Lie superalgebra.
Received: February 18, 2013; in final form August 15, 2013; Published online August 23, 2013
Bibliographic databases:
Document Type: Article
MSC: 53D10; 17B66; 17B10
Language: English
Citation: Najla Mellouli, Aboubacar Nibirantiza, Fabian Radoux, “$\mathfrak{spo}(2|2)$-Equivariant Quantizations on the Supercircle $S^{1|2}$”, SIGMA, 9 (2013), 055, 17 pp.
Citation in format AMSBIB
\Bibitem{MelNibRad13}
\by Najla~Mellouli, Aboubacar~Nibirantiza, Fabian~Radoux
\paper $\mathfrak{spo}(2|2)$-Equivariant Quantizations on the Supercircle $S^{1|2}$
\jour SIGMA
\yr 2013
\vol 9
\papernumber 055
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma838}
\crossref{https://doi.org/10.3842/SIGMA.2013.055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3116191}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323410700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84882788229}
Linking options:
  • https://www.mathnet.ru/eng/sigma838
  • https://www.mathnet.ru/eng/sigma/v9/p55
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024