Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 050, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.050
(Mi sigma833)
 

This article is cited in 3 scientific papers (total in 3 papers)

A Connection Formula for the $q$-Confluent Hypergeometric Function

Takeshi Morita

Graduate School of Information Science and Technology, Osaka University, 1-1 Machikaneyama-machi, Toyonaka, 560-0043, Japan
Full-text PDF (357 kB) Citations (3)
References:
Abstract: We show a connection formula for the $q$-confluent hypergeometric functions ${}_2\varphi_1(a,b;0;q,x)$. Combining our connection formula with Zhang's connection formula for ${}_2\varphi_0(a,b;-;q,x)$, we obtain the connection formula for the $q$-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer's confluent hypergeometric functions by taking the limit $q\to 1^{-}$ of our connection formula.
Keywords: $q$-Borel–Laplace transformation; $q$-difference equation; connection problem; $q$-confluent hypergeometric function.
Received: October 9, 2012; in final form July 21, 2013; Published online July 26, 2013
Bibliographic databases:
Document Type: Article
MSC: 33D15; 34M40; 39A13
Language: English
Citation: Takeshi Morita, “A Connection Formula for the $q$-Confluent Hypergeometric Function”, SIGMA, 9 (2013), 050, 13 pp.
Citation in format AMSBIB
\Bibitem{Mor13}
\by Takeshi~Morita
\paper A Connection Formula for the $q$-Confluent Hypergeometric Function
\jour SIGMA
\yr 2013
\vol 9
\papernumber 050
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma833}
\crossref{https://doi.org/10.3842/SIGMA.2013.050}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3116186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000322308200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880763625}
Linking options:
  • https://www.mathnet.ru/eng/sigma833
  • https://www.mathnet.ru/eng/sigma/v9/p50
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024