Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 047, 40 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.047
(Mi sigma830)
 

This article is cited in 33 scientific papers (total in 33 papers)

The Universal Askey–Wilson Algebra and DAHA of Type $(C_1^{\vee},C_1)$

Paul Terwilliger

Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
References:
Abstract: Let $\mathbb F$ denote a field, and fix a nonzero $q\in\mathbb F$ such that $q^4\not=1$. The universal Askey–Wilson algebra $\Delta_q$ is the associative $\mathbb F$-algebra defined by generators and relations in the following way. The generators are $A$, $B$, $C$. The relations assert that each of
\begin{gather*} A+\frac{qBC-q^{-1}CB}{q^2-q^{-2}}, \qquad B+\frac{qCA-q^{-1}AC}{q^2-q^{-2}}, \qquad C+\frac{qAB-q^{-1}BA}{q^2-q^{-2}} \end{gather*}
is central in $\Delta_q$. The universal DAHA $\hat H_q$ of type $(C_1^\vee,C_1)$ is the associative $\mathbb F$-algebra defined by generators $\lbrace t^{\pm1}_i\rbrace_{i=0}^3$ and relations (i) $t_i t^{-1}_i=t^{-1}_i t_i=1$; (ii) $t_i+t^{-1}_i$ is central; (iii) $t_0t_1t_2t_3=q^{-1}$. We display an injection of $\mathbb F$-algebras $\psi:\Delta_q\to\hat H_q$ that sends
\begin{gather*} A\mapsto t_1t_0+(t_1t_0)^{-1}, \qquad B\mapsto t_3t_0+(t_3t_0)^{-1}, \qquad C\mapsto t_2t_0+(t_2t_0)^{-1}. \end{gather*}
For the map $\psi$ we compute the image of the three central elements mentioned above. The algebra $\Delta_q$ has another central element of interest, called the Casimir element $\Omega$. We compute the image of $\Omega$ under $\psi$. We describe how the Artin braid group $B_3$ acts on $\Delta_q$ and $\hat H_q$ as a group of automorphisms. We show that $\psi$ commutes with these $B_3$ actions. Some related results are obtained.
Keywords: Askey–Wilson polynomials; Askey–Wilson relations; rank one DAHA.
Received: December 22, 2012; in final form July 7, 2013; Published online July 15, 2013
Bibliographic databases:
Document Type: Article
MSC: 33D80; 33D45
Language: English
Citation: Paul Terwilliger, “The Universal Askey–Wilson Algebra and DAHA of Type $(C_1^{\vee},C_1)$”, SIGMA, 9 (2013), 047, 40 pp.
Citation in format AMSBIB
\Bibitem{Ter13}
\by Paul~Terwilliger
\paper The Universal Askey--Wilson Algebra and DAHA of Type $(C_1^{\vee},C_1)$
\jour SIGMA
\yr 2013
\vol 9
\papernumber 047
\totalpages 40
\mathnet{http://mi.mathnet.ru/sigma830}
\crossref{https://doi.org/10.3842/SIGMA.2013.047}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3116183}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321693300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880307874}
Linking options:
  • https://www.mathnet.ru/eng/sigma830
  • https://www.mathnet.ru/eng/sigma/v9/p47
  • This publication is cited in the following 33 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024