Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 043, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.043
(Mi sigma826)
 

This article is cited in 1 scientific paper (total in 1 paper)

Vector-Valued Polynomials and a Matrix Weight Function with $B_{2}$-Action. II

Charles F. Dunkl

Department of Mathematics, University of Virginia, PO Box 400137, Charlottesville VA 22904-4137, USA
Full-text PDF (325 kB) Citations (1)
References:
Abstract: This is a sequel to [SIGMA 9 (2013), 007, 23 pages], in which there is a construction of a $2\times2$ positive-definite matrix function $K (x)$ on $\mathbb{R}^{2}$. The entries of $K(x)$ are expressed in terms of hypergeometric functions. This matrix is used in the formula for a Gaussian inner product related to the standard module of the rational Cherednik algebra for the group $W (B_{2})$ (symmetry group of the square) associated to the ($2$-dimensional) reflection representation. The algebra has two parameters: $k_{0}$, $k_{1}$. In the previous paper $K$ is determined up to a scalar, namely, the normalization constant. The conjecture stated there is proven in this note. An asymptotic formula for a sum of $_{3}F_{2}$-type is derived and used for the proof.
Keywords: matrix Gaussian weight function.
Received: February 15, 2013; in final form June 7, 2013; Published online June 12, 2013
Bibliographic databases:
Document Type: Article
MSC: 33C52; 33C20
Language: English
Citation: Charles F. Dunkl, “Vector-Valued Polynomials and a Matrix Weight Function with $B_{2}$-Action. II”, SIGMA, 9 (2013), 043, 11 pp.
Citation in format AMSBIB
\Bibitem{Dun13}
\by Charles~F.~Dunkl
\paper Vector-Valued Polynomials and a~Matrix Weight Function with $B_{2}$-Action.~II
\jour SIGMA
\yr 2013
\vol 9
\papernumber 043
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma826}
\crossref{https://doi.org/10.3842/SIGMA.2013.043}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3116179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320304000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879050918}
Linking options:
  • https://www.mathnet.ru/eng/sigma826
  • https://www.mathnet.ru/eng/sigma/v9/p43
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024