Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 040, 29 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.040
(Mi sigma823)
 

This article is cited in 14 scientific papers (total in 14 papers)

Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle

Micho Ðurđevicha, Stephen Bruce Sontzb

a Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP 04510, Mexico City, Mexico
b Centro de Investigación en Matemáticas, A.C. (CIMAT), Jalisco s/n, Mineral de Valenciana, CP 36240, Guanajuato, Gto., Mexico
References:
Abstract: A quantum principal bundle is constructed for every Coxeter group acting on a finite-dimensional Euclidean space $E$, and then a connection is also defined on this bundle. The covariant derivatives associated to this connection are the Dunkl operators, originally introduced as part of a program to generalize harmonic analysis in Euclidean spaces. This gives us a new, geometric way of viewing the Dunkl operators. In particular, we present a new proof of the commutativity of these operators among themselves as a consequence of a geometric property, namely, that the connection has curvature zero.
Keywords: Dunkl operators; quantum principal bundle; quantum connection; quantum curvature; Coxeter groups.
Received: November 1, 2012; in final form May 17, 2013; Published online May 30, 2013
Bibliographic databases:
Document Type: Article
MSC: 20F55; 81R50; 81R60
Language: English
Citation: Micho Ðurđevich, Stephen Bruce Sontz, “Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle”, SIGMA, 9 (2013), 040, 29 pp.
Citation in format AMSBIB
\Bibitem{DhuSon13}
\by Micho~{\DJ}ur{\dj}evich, Stephen~Bruce~Sontz
\paper Dunkl Operators as Covariant Derivatives in a~Quantum Principal Bundle
\jour SIGMA
\yr 2013
\vol 9
\papernumber 040
\totalpages 29
\mathnet{http://mi.mathnet.ru/sigma823}
\crossref{https://doi.org/10.3842/SIGMA.2013.040}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3116176}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319556500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878454917}
Linking options:
  • https://www.mathnet.ru/eng/sigma823
  • https://www.mathnet.ru/eng/sigma/v9/p40
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :56
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024