Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 038, 28 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.038
(Mi sigma821)
 

Relative Critical Points

Debra Lewis

Mathematics Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
References:
Abstract: Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual) of the symmetry group. Setting aside the structures — symplectic, Poisson, or variational — generating dynamical systems from such functions highlights the common features of their construction and analysis, and supports the construction of analogous functions in non-Hamiltonian settings. If the symmetry group is nonabelian, the functions are invariant only with respect to the isotropy subgroup of the given parameter value. Replacing the parametrized family of functions with a single function on the product manifold and extending the action using the (co)adjoint action on the algebra or its dual yields a fully invariant function. An invariant map can be used to reverse the usual perspective: rather than selecting a parametrized family of functions and finding their critical points, conditions under which functions will be critical on specific orbits, typically distinguished by isotropy class, can be derived. This strategy is illustrated using several well-known mechanical systems — the Lagrange top, the double spherical pendulum, the free rigid body, and the Riemann ellipsoids — and generalizations of these systems.
Keywords: relative equilibria; symmetries; conservative systems; Riemann ellipsoids.
Received: October 1, 2012; in final form May 6, 2013; Published online May 17, 2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Debra Lewis, “Relative Critical Points”, SIGMA, 9 (2013), 038, 28 pp.
Citation in format AMSBIB
\Bibitem{Lew13}
\by Debra~Lewis
\paper Relative Critical Points
\jour SIGMA
\yr 2013
\vol 9
\papernumber 038
\totalpages 28
\mathnet{http://mi.mathnet.ru/sigma821}
\crossref{https://doi.org/10.3842/SIGMA.2013.038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3116174}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318977100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878032283}
Linking options:
  • https://www.mathnet.ru/eng/sigma821
  • https://www.mathnet.ru/eng/sigma/v9/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :47
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024