Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 036, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.036
(Mi sigma819)
 

On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces

Jeongoo Cheh

Department of Mathematics & Statistics, The University of Toledo, Toledo, OH 43606, USA
References:
Abstract: We show how to find a complete set of necessary and sufficient conditions that solve the fixed-parameter local congruence problem of immersions in $G$-spaces, whether homogeneous or not, provided that a certain $k^{\mathrm{th}}$ order jet bundle over the $G$-space admits a $G$-invariant local coframe field of constant structure. As a corollary, we note that the differential order of a minimal complete set of congruence invariants is bounded by $k+1$. We demonstrate the method by rediscovering the speed and curvature invariants of Euclidean planar curves, the Schwarzian derivative of holomorphic immersions in the complex projective line, and equivalents of the first and second fundamental forms of surfaces in $\mathbb{R}^3$ subject to rotations.
Keywords: congruence; nonhomogeneous space; equivariant moving frame; constant-structure invariant coframe field.
Received: May 14, 2012; in final form April 19, 2013; Published online April 28, 2013
Bibliographic databases:
Document Type: Article
MSC: 53A55; 53B25
Language: English
Citation: Jeongoo Cheh, “On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces”, SIGMA, 9 (2013), 036, 21 pp.
Citation in format AMSBIB
\Bibitem{Che13}
\by Jeongoo~Cheh
\paper On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces
\jour SIGMA
\yr 2013
\vol 9
\papernumber 036
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma819}
\crossref{https://doi.org/10.3842/SIGMA.2013.036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3116173}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318162500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876992713}
Linking options:
  • https://www.mathnet.ru/eng/sigma819
  • https://www.mathnet.ru/eng/sigma/v9/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :40
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024