|
This article is cited in 5 scientific papers (total in 5 papers)
The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape
Analysis
M. Boutina, Sh. Huangb a School of Electrical and Computer Engineering, Purdue University, USA
b Department of Mathematics, Purdue University, USA
Abstract:
We define the Pascal triangle of a discrete (gray scale) image as a pyramidal arrangement of complex-valued moments and we explore its geometric significance. In particular, we show that the entries of row $k$ of this triangle correspond to the Fourier series coefficients of the moment of order $k$ of the Radon transform of the image. Group actions on the plane can be naturally prolonged onto the entries of the Pascal triangle. We study the prolongation of some common group actions, such as rotations and reflections, and we propose simple tests for detecting equivalences and self-equivalences under these group actions. The motivating application of this work is the problem of characterizing the geometry of objects on images, for example by detecting approximate symmetries.
Keywords:
moments; symmetry detection; moving frame; shape recognition.
Received: September 24, 2012; in final form April 3, 2013; Published online April 11, 2013
Citation:
M. Boutin, Sh. Huang, “The Pascal Triangle of a Discrete Image: Definition, Properties and Application to Shape
Analysis”, SIGMA, 9 (2013), 031, 25 pp.
Linking options:
https://www.mathnet.ru/eng/sigma814 https://www.mathnet.ru/eng/sigma/v9/p31
|
Statistics & downloads: |
Abstract page: | 180 | Full-text PDF : | 37 | References: | 48 |
|