Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 028, 46 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.028
(Mi sigma811)
 

This article is cited in 13 scientific papers (total in 13 papers)

Free Fermi and Bose Fields in TQFT and GBF

Robert Oeckl

Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, C.P. 58190, Morelia, Michoacán, Mexico
References:
Abstract: We present a rigorous and functorial quantization scheme for linear fermionic and bosonic field theory targeting the topological quantum field theory (TQFT) that is part of the general boundary formulation (GBF). Motivated by geometric quantization, we generalize a previous axiomatic characterization of classical linear bosonic field theory to include the fermionic case. We proceed to describe the quantization scheme, combining a Fock space quantization for state spaces with the Feynman path integral for amplitudes. We show rigorously that the resulting quantum theory satisfies the axioms of the TQFT, in a version generalized to include fermionic theories. In the bosonic case we show the equivalence to a previously developed holomorphic quantization scheme. Remarkably, it turns out that consistency in the fermionic case requires state spaces to be Krein spaces rather than Hilbert spaces. This is also supported by arguments from geometric quantization and by the explicit example of the Dirac field theory. Contrary to intuition from the standard formulation of quantum theory, we show that this is compatible with a consistent probability interpretation in the GBF. Another surprise in the fermionic case is the emergence of an algebraic notion of time, already in the classical theory, but inherited by the quantum theory. As in earlier work we need to impose an integrability condition in the bosonic case for all TQFT axioms to hold, due to the gluing anomaly. In contrast, we are able to renormalize this gluing anomaly in the fermionic case.
Keywords: general boundary formulation; topological quantum field theory; fermions; free field theory; functorial quantization; foundations of quantum theory; quantum field theory.
Received: August 31, 2012; in final form April 2, 2013; Published online April 5, 2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Robert Oeckl, “Free Fermi and Bose Fields in TQFT and GBF”, SIGMA, 9 (2013), 028, 46 pp.
Citation in format AMSBIB
\Bibitem{Oec13}
\by Robert~Oeckl
\paper Free Fermi and Bose Fields in TQFT and GBF
\jour SIGMA
\yr 2013
\vol 9
\papernumber 028
\totalpages 46
\mathnet{http://mi.mathnet.ru/sigma811}
\crossref{https://doi.org/10.3842/SIGMA.2013.028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3056172}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317037800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876009997}
Linking options:
  • https://www.mathnet.ru/eng/sigma811
  • https://www.mathnet.ru/eng/sigma/v9/p28
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :36
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024