Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 026, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.026
(Mi sigma809)
 

This article is cited in 8 scientific papers (total in 8 papers)

A Quasi-Lie Schemes Approach to Second-Order Gambier Equations

José F. Cariñenaa, Partha Guhab, Javier de Lucasc

a Department of Theoretical Physics and IUMA, University of Zaragoza, Pedro Cerbuna 12, 50.009, Zaragoza, Spain
b S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata - 700.098, India
c Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Wóy-cickiego 1/3, 01-938, Warsaw, Poland
Full-text PDF (484 kB) Citations (8)
References:
Abstract: A quasi-Lie scheme is a geometric structure that provides $t$-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way. This allows us to study the transformation of these equations into simpler canonical forms, which solves a gap in the previous literature, and other relevant differential equations, which leads to derive new constants of motion for families of second-order Gambier equations. Additionally, we describe general solutions of certain second-order Gambier equations in terms of particular solutions of Riccati equations, linear systems, and $t$-dependent frequency harmonic oscillators.
Keywords: Lie system; Kummer–Schwarz equation; Milne–Pinney equation; quasi-Lie scheme; quasi-Lie system; second-order Gambier equation; second-order Riccati equation; superposition rule.
Received: September 26, 2012; in final form March 14, 2013; Published online March 26, 2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: José F. Cariñena, Partha Guha, Javier de Lucas, “A Quasi-Lie Schemes Approach to Second-Order Gambier Equations”, SIGMA, 9 (2013), 026, 23 pp.
Citation in format AMSBIB
\Bibitem{CarGuhDe 13}
\by Jos\'e~F.~Cari\~nena, Partha~Guha, Javier~de Lucas
\paper A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
\jour SIGMA
\yr 2013
\vol 9
\papernumber 026
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma809}
\crossref{https://doi.org/10.3842/SIGMA.2013.026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3056170}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316938900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84875673329}
Linking options:
  • https://www.mathnet.ru/eng/sigma809
  • https://www.mathnet.ru/eng/sigma/v9/p26
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :63
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024