Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 017, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.017
(Mi sigma800)
 

This article is cited in 6 scientific papers (total in 6 papers)

The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas

Ian. M. Anderson, Mark E. Fels

Utah State University, Logan Utah, USA
Full-text PDF (443 kB) Citations (6)
References:
Abstract: To every Darboux integrable system there is an associated Lie group $G$ which is a fundamental invariant of the system and which we call the Vessiot group. This article shows that solving the Cauchy problem for a Darboux integrable partial differential equation can be reduced to solving an equation of Lie type for the Vessiot group $G$. If the Vessiot group $G$ is solvable then the Cauchy problem can be solved by quadratures. This allows us to give explicit integral formulas, similar to the well known d'Alembert's formula for the wave equation, to the initial value problem with generic non-characteristic initial data.
Keywords: Cauchy problem; Darboux integrability; exterior differential systems; d'Alembert's formula.
Received: October 8, 2012; in final form February 20, 2013; Published online February 27, 2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Ian. M. Anderson, Mark E. Fels, “The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas”, SIGMA, 9 (2013), 017, 22 pp.
Citation in format AMSBIB
\Bibitem{AndFel13}
\by Ian.~M.~Anderson, Mark~E.~Fels
\paper The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas
\jour SIGMA
\yr 2013
\vol 9
\papernumber 017
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma800}
\crossref{https://doi.org/10.3842/SIGMA.2013.017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3033559}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315600100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874550830}
Linking options:
  • https://www.mathnet.ru/eng/sigma800
  • https://www.mathnet.ru/eng/sigma/v9/p17
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :44
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024