Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 006, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.006
(Mi sigma789)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the $N$-Solitons Solutions in the Novikov–Veselov Equation

Jen-Hsu Chang

Department of Computer Science and Information Engineering, National Defense University, Tauyuan, Taiwan
Full-text PDF (352 kB) Citations (4)
References:
Abstract: We construct the $N$-solitons solution in the Novikov–Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the $N$-solitons wave function is proved using the Pfaffian expansion. This property corresponding to the discrete scattering data for $N$-solitons solution is obtained in [arXiv:0912.2155] from the $\overline\partial$-dressing method.
Keywords: Novikov–Veselov equation; $N$-solitons solutions; Pfaffian expansion; wave functions.
Received: October 1, 2012; in final form January 12, 2013; Published online January 20, 2013
Bibliographic databases:
Document Type: Article
MSC: 35C08; 35A22
Language: English
Citation: Jen-Hsu Chang, “On the $N$-Solitons Solutions in the Novikov–Veselov Equation”, SIGMA, 9 (2013), 006, 13 pp.
Citation in format AMSBIB
\Bibitem{Cha13}
\by Jen-Hsu~Chang
\paper On the $N$-Solitons Solutions in the Novikov--Veselov Equation
\jour SIGMA
\yr 2013
\vol 9
\papernumber 006
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma789}
\crossref{https://doi.org/10.3842/SIGMA.2013.006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3033548}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000313820300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872773416}
Linking options:
  • https://www.mathnet.ru/eng/sigma789
  • https://www.mathnet.ru/eng/sigma/v9/p6
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :42
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024