Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2013, Volume 9, 001, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2013.001
(Mi sigma784)
 

This article is cited in 25 scientific papers (total in 25 papers)

Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries

Changzheng Qua, Junfeng Songb, Ruoxia Yaoc

a Center for Nonlinear Studies, Ningbo University, Ningbo, 315211, P.R. China
b College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062, P.R. China
c School of Computer Science, Shaanxi Normal University, Xi’an, 710062, P.R. China
References:
Abstract: In this paper, multi-component generalizations to the Camassa–Holm equation, the modified Camassa–Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa–Holm equation and the multi-component modified Camassa–Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and $n$-dimensional sphere ${\mathbb S}^n(1)$. Integrability to these systems is also studied.
Keywords: invariant curve flow; integrable system; Euclidean geometry; Möbius sphere; dual Schrödinger equation; multi-component modified Camassa–Holm equation.
Received: September 28, 2012; in final form December 27, 2012; Published online January 2, 2013
Bibliographic databases:
Document Type: Article
MSC: 37K10; 51M05; 51B10
Language: English
Citation: Changzheng Qu, Junfeng Song, Ruoxia Yao, “Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries”, SIGMA, 9 (2013), 001, 19 pp.
Citation in format AMSBIB
\Bibitem{QuSonYao13}
\by Changzheng~Qu, Junfeng~Song, Ruoxia~Yao
\paper Multi-Component Integrable Systems and~Invariant Curve Flows in Certain Geometries
\jour SIGMA
\yr 2013
\vol 9
\papernumber 001
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma784}
\crossref{https://doi.org/10.3842/SIGMA.2013.001}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3011594}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312911400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872072930}
Linking options:
  • https://www.mathnet.ru/eng/sigma784
  • https://www.mathnet.ru/eng/sigma/v9/p1
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :76
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024