Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 100, 53 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.100
(Mi sigma777)
 

This article is cited in 22 scientific papers (total in 22 papers)

Geometry of Spectral Curves and All Order Dispersive Integrable System

Gaëtan Borota, Bertrand Eynardbc

a Section de Mathématiques, Université de Genève, 2-4 rue du Lièvre, 1211 Genève 4, Switzerland
b Institut de Physique Théorique, CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France
c Centre de Recherche Mathématiques de Montréal, Université de Montréal, P.O. Box 6128, Montréal (Québec) H3C 3J7, Canada
References:
Abstract: We propose a definition for a Tau function and a spinor kernel (closely related to Baker–Akhiezer functions), where times parametrize slow (of order $1/N$) deformations of an algebraic plane curve. This definition consists of a formal asymptotic series in powers of $1/N$, where the coefficients involve theta functions whose phase is linear in $N$ and therefore features generically fast oscillations when $N$ is large. The large $N$ limit of this construction coincides with the algebro-geometric solutions of the multi-KP equation, but where the underlying algebraic curve evolves according to Whitham equations. We check that our conjectural Tau function satisfies Hirota equations to the first two orders, and we conjecture that they hold to all orders. The Hirota equations are equivalent to a self-replication property for the spinor kernel. We analyze its consequences, namely the possibility of reconstructing order by order in $1/N$ an isomonodromic problem given by a Lax pair, and the relation between “correlators”, the tau function and the spinor kernel. This construction is one more step towards a unified framework relating integrable hierarchies, topological recursion and enumerative geometry.
Keywords: topological recursion; Tau function; Sato formula; Hirota equations; Whitham equations.
Received: November 14, 2011; in final form December 11, 2012; Published online December 18, 2012
Bibliographic databases:
Document Type: Article
MSC: 14H70; 14H42; 30Fxx
Language: English
Citation: Gaëtan Borot, Bertrand Eynard, “Geometry of Spectral Curves and All Order Dispersive Integrable System”, SIGMA, 8 (2012), 100, 53 pp.
Citation in format AMSBIB
\Bibitem{BorEyn12}
\by Ga\"etan~Borot, Bertrand~Eynard
\paper Geometry of Spectral Curves and All Order Dispersive Integrable System
\jour SIGMA
\yr 2012
\vol 8
\papernumber 100
\totalpages 53
\mathnet{http://mi.mathnet.ru/sigma777}
\crossref{https://doi.org/10.3842/SIGMA.2012.100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007259}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312437000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871749695}
Linking options:
  • https://www.mathnet.ru/eng/sigma777
  • https://www.mathnet.ru/eng/sigma/v8/p100
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :65
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024