Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 099, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.099
(Mi sigma776)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the Number of Real Roots of the Yablonskii–Vorob'ev Polynomials

Pieter Roffelsen

Radboud University Nijmegen, IMAPP, FNWI, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Full-text PDF (282 kB) Citations (3)
References:
Abstract: We study the real roots of the Yablonskii–Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the $n$th Yablonskii–Vorob'ev polynomial equals $\left[\frac{n+1}{2}\right]$. We prove this conjecture using an interlacing property between the roots of the Yablonskii–Vorob'ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the $n$th Yablonskii–Vorob'ev polynomial.
Keywords: second Painlevé equation; rational solutions; real roots; interlacing of roots; Yablonskii–Vorob'ev polynomials.
Received: August 14, 2012; in final form December 7, 2012; Published online December 14, 2012
Bibliographic databases:
Document Type: Article
MSC: 34M55
Language: English
Citation: Pieter Roffelsen, “On the Number of Real Roots of the Yablonskii–Vorob'ev Polynomials”, SIGMA, 8 (2012), 099, 9 pp.
Citation in format AMSBIB
\Bibitem{Rof12}
\by Pieter~Roffelsen
\paper On the Number of Real Roots of the Yablonskii--Vorob'ev Polynomials
\jour SIGMA
\yr 2012
\vol 8
\papernumber 099
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma776}
\crossref{https://doi.org/10.3842/SIGMA.2012.099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007260}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312436900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871477585}
Linking options:
  • https://www.mathnet.ru/eng/sigma776
  • https://www.mathnet.ru/eng/sigma/v8/p99
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :52
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024