Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 097, 27 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.097
(Mi sigma774)
 

This article is cited in 9 scientific papers (total in 9 papers)

Construction of a Lax Pair for the $E_6^{(1)}$ $q$-Painlevé System

Nicholas S. Wittea, Christopher M. Ormerodb

a Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
b Department of Mathematics and Statistics, La Trobe University, Bundoora VIC 3086, Australia
Full-text PDF (519 kB) Citations (9)
References:
Abstract: We construct a Lax pair for the $ E^{(1)}_6 $ $q$-Painlevé system from first principles by employing the general theory of semi-classical orthogonal polynomial systems characterised by divided-difference operators on discrete, quadratic lattices [arXiv:1204.2328]. Our study treats one special case of such lattices – the $q$-linear lattice – through a natural generalisation of the big $q$-Jacobi weight. As a by-product of our construction we derive the coupled first-order $q$-difference equations for the $ E^{(1)}_6 $ $q$-Painlevé system, thus verifying our identification. Finally we establish the correspondences of our result with the Lax pairs given earlier and separately by Sakai and Yamada, through explicit transformations.
Keywords: non-uniform lattices; divided-difference operators; orthogonal polynomials; semi-classical weights; isomonodromic deformations; Askey table.
Received: September 5, 2012; in final form November 29, 2012; Published online December 11, 2012
Bibliographic databases:
Document Type: Article
Language: English
Citation: Nicholas S. Witte, Christopher M. Ormerod, “Construction of a Lax Pair for the $E_6^{(1)}$ $q$-Painlevé System”, SIGMA, 8 (2012), 097, 27 pp.
Citation in format AMSBIB
\Bibitem{WitOrm12}
\by Nicholas~S.~Witte, Christopher~M.~Ormerod
\paper Construction of a Lax Pair for the $E_6^{(1)}$ $q$-Painlev\'e System
\jour SIGMA
\yr 2012
\vol 8
\papernumber 097
\totalpages 27
\mathnet{http://mi.mathnet.ru/sigma774}
\crossref{https://doi.org/10.3842/SIGMA.2012.097}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007262}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312436700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871482705}
Linking options:
  • https://www.mathnet.ru/eng/sigma774
  • https://www.mathnet.ru/eng/sigma/v8/p97
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :57
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024