Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 094, 707 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.094
(Mi sigma771)
 

This article is cited in 44 scientific papers (total in 44 papers)

Minkowski Polynomials and Mutations

Mohammad Akhtara, Tom Coatesa, Sergey Galkinb, Alexander M. Kasprzyka

a Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
b Universität Wien, Fakultät für Mathematik, Garnisongasse 3/14, A-1090 Wien, Austria
References:
Abstract: Given a Laurent polynomial $f$, one can form the period of $f$: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with cluster algebras. We propose a higher-dimensional analog of mutation acting on Laurent polynomials $f$ in $n$ variables. In particular we give a combinatorial description of mutation acting on the Newton polytope $P$ of $f$, and use this to establish many basic facts about mutations. Mutations can be understood combinatorially in terms of Minkowski rearrangements of slices of $P$, or in terms of piecewise-linear transformations acting on the dual polytope $P^*$ (much like cluster transformations). Mutations map Fano polytopes to Fano polytopes, preserve the Ehrhart series of the dual polytope, and preserve the period of $f$. Finally we use our results to show that Minkowski polynomials, which are a family of Laurent polynomials that give mirror partners to many three-dimensional Fano manifolds, are connected by a sequence of mutations if and only if they have the same period.
Keywords: mirror symmetry; Fano manifold; Laurent polynomial; mutation; cluster transformation; Minkowski decomposition; Minkowski polynomial; Newton polytope; Ehrhart series; quasi-period collapse.
Received: June 14, 2012; in final form December 1, 2012; Published online December 8, 2012
Bibliographic databases:
Document Type: Article
MSC: 52B20; 16S34; 14J33
Language: English
Citation: Mohammad Akhtar, Tom Coates, Sergey Galkin, Alexander M. Kasprzyk, “Minkowski Polynomials and Mutations”, SIGMA, 8 (2012), 094, 707 pp.
Citation in format AMSBIB
\Bibitem{AkhCoaGal12}
\by Mohammad~Akhtar, Tom~Coates, Sergey~Galkin, Alexander~M.~Kasprzyk
\paper Minkowski Polynomials and Mutations
\jour SIGMA
\yr 2012
\vol 8
\papernumber 094
\totalpages 707
\mathnet{http://mi.mathnet.ru/sigma771}
\crossref{https://doi.org/10.3842/SIGMA.2012.094}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312436400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872777483}
Linking options:
  • https://www.mathnet.ru/eng/sigma771
  • https://www.mathnet.ru/eng/sigma/v8/p94
  • This publication is cited in the following 44 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:655
    Full-text PDF :96
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024