Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 090, 37 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.090
(Mi sigma767)
 

This article is cited in 8 scientific papers (total in 8 papers)

The Klein–Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$

Mariya N. Kuznetsovaa, Asli Pekcanb, Anatoliy V. Zhiberc

a Ufa State Aviation Technical University, 12 K. Marx Str., Ufa, Russia
b Department of Mathematics, Istanbul University, Istanbul, Turkey
c Ufa Institute of Mathematics, Russian Academy of Science, 112 Chernyshevskii Str., Ufa, Russia
Full-text PDF (552 kB) Citations (8)
References:
Abstract: We present the complete classification of equations of the form $u_{xy} = f(u, u_x, u_y)$ and the Klein–Gordon equations $v_{xy} = F(v)$ connected with one another by differential substitutions $v = \varphi(u, u_x, u_y)$ such that $\varphi_{u_x}\varphi_{u_y}\neq 0$ over the ring of complex-valued variables.
Keywords: Klein–Gordon equation; differential substitution.
Received: April 25, 2012; in final form November 14, 2012; Published online November 26, 2012
Bibliographic databases:
Document Type: Article
MSC: 35L70
Language: English
Citation: Mariya N. Kuznetsova, Asli Pekcan, Anatoliy V. Zhiber, “The Klein–Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$”, SIGMA, 8 (2012), 090, 37 pp.
Citation in format AMSBIB
\Bibitem{KuzPekZhi12}
\by Mariya~N.~Kuznetsova, Asli~Pekcan, Anatoliy~V.~Zhiber
\paper The Klein--Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$
\jour SIGMA
\yr 2012
\vol 8
\papernumber 090
\totalpages 37
\mathnet{http://mi.mathnet.ru/sigma767}
\crossref{https://doi.org/10.3842/SIGMA.2012.090}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007269}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312378800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881618264}
Linking options:
  • https://www.mathnet.ru/eng/sigma767
  • https://www.mathnet.ru/eng/sigma/v8/p90
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :78
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024