Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 089, 31 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.089
(Mi sigma766)
 

This article is cited in 6 scientific papers (total in 6 papers)

Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables

Philip Broadbridgea, Claudia M. Chanub, Willard Miller Jr.c

a School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
b Dipartimento di Matematica G. Peano, Università di Torino, Torino, Italy
c School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455, USA
Full-text PDF (493 kB) Citations (6)
References:
Abstract: Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton–Jacobi, Helmholtz and time-independent Schrödinger equations with potential on $N$-dimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of $N-1$ commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples.
Keywords: nonregular separation of variables; Helmholtz equation; Schrödinger equation.
Received: September 21, 2012; in final form November 19, 2012; Published online November 26, 2012
Bibliographic databases:
Document Type: Article
MSC: 35Q40; 35J05
Language: English
Citation: Philip Broadbridge, Claudia M. Chanu, Willard Miller Jr., “Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables”, SIGMA, 8 (2012), 089, 31 pp.
Citation in format AMSBIB
\Bibitem{BroChaMil12}
\by Philip~Broadbridge, Claudia~M.~Chanu, Willard~Miller~Jr.
\paper Solutions of Helmholtz and Schr\"odinger Equations with Side Condition and Nonregular Separation of Variables
\jour SIGMA
\yr 2012
\vol 8
\papernumber 089
\totalpages 31
\mathnet{http://mi.mathnet.ru/sigma766}
\crossref{https://doi.org/10.3842/SIGMA.2012.089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007270}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312378600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870309828}
Linking options:
  • https://www.mathnet.ru/eng/sigma766
  • https://www.mathnet.ru/eng/sigma/v8/p89
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024