Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 088, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.088
(Mi sigma765)
 

This article is cited in 7 scientific papers (total in 7 papers)

Nekrasov's Partition Function and Refined Donaldson–Thomas Theory: the Rank One Case

Balázs Szendrői

Mathematical Institute, University of Oxford, UK
Full-text PDF (451 kB) Citations (7)
References:
Abstract: This paper studies geometric engineering, in the simplest possible case of rank one (Abelian) gauge theory on the affine plane and the resolved conifold. We recall the identification between Nekrasov's partition function and a version of refined Donaldson–Thomas theory, and study the relationship between the underlying vector spaces. Using a purity result, we identify the vector space underlying refined Donaldson–Thomas theory on the conifold geometry as the exterior space of the space of polynomial functions on the affine plane, with the (Lefschetz) $\mathrm{SL}(2)$-action on the threefold side being dual to the geometric $\mathrm{SL}(2)$-action on the affine plane. We suggest that the exterior space should be a module for the (explicitly not yet known) cohomological Hall algebra (algebra of BPS states) of the conifold.
Keywords: geometric engineering; Donaldson–Thomas theory; resolved conifold.
Received: June 12, 2012; in final form November 5, 2012; Published online November 17, 2012
Bibliographic databases:
Document Type: Article
MSC: 14J32
Language: English
Citation: Balázs Szendrői, “Nekrasov's Partition Function and Refined Donaldson–Thomas Theory: the Rank One Case”, SIGMA, 8 (2012), 088, 16 pp.
Citation in format AMSBIB
\Bibitem{Sze12}
\by Bal\'azs~Szendr{\H o}i
\paper Nekrasov's Partition Function and Refined Donaldson--Thomas Theory: the~Rank One Case
\jour SIGMA
\yr 2012
\vol 8
\papernumber 088
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma765}
\crossref{https://doi.org/10.3842/SIGMA.2012.088}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007271}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312378500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870031642}
Linking options:
  • https://www.mathnet.ru/eng/sigma765
  • https://www.mathnet.ru/eng/sigma/v8/p88
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :129
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024