Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 087, 23 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.087
(Mi sigma764)
 

This article is cited in 11 scientific papers (total in 11 papers)

Geometric Theory of the Recursion Operators for the Generalized Zakharov–Shabat System in Pole Gauge on the Algebra $\mathrm{sl}(n,\mathbb C)$ with and without Reductions

Alexandar B. Yanovskia, Gaetano Vilasib

a Department of Mathematics & Applied Mathematics, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
b Dipartimento di Fisica, Universitè degli Studi di Salerno, INFN, Sezione di Napoli-GC Salerno, Via Ponte Don Melillo, 84084, Fisciano (Salerno), Italy
References:
Abstract: We consider the recursion operator approach to the soliton equations related to the generalized Zakharov–Shabat system on the algebra $\mathrm{sl}(n,\mathbb C)$ in pole gauge both in the general position and in the presence of reductions. We present the recursion operators and discuss their geometric meaning as conjugate to Nijenhuis tensors for a Poisson–Nijenhuis structure defined on the manifold of potentials.
Keywords: Lax representation; recursion operators; Nijenhuis tensors.
Received: May 17, 2012; in final form November 5, 2012; Published online November 16, 2012
Bibliographic databases:
Document Type: Article
MSC: 35Q51; 37K05; 37K10
Language: English
Citation: Alexandar B. Yanovski, Gaetano Vilasi, “Geometric Theory of the Recursion Operators for the Generalized Zakharov–Shabat System in Pole Gauge on the Algebra $\mathrm{sl}(n,\mathbb C)$ with and without Reductions”, SIGMA, 8 (2012), 087, 23 pp.
Citation in format AMSBIB
\Bibitem{YanVil12}
\by Alexandar~B.~Yanovski, Gaetano~Vilasi
\paper Geometric Theory of the Recursion Operators for the Generalized Zakharov--Shabat System in Pole Gauge on the Algebra $\mathrm{sl}(n,\mathbb C)$ with and without Reductions
\jour SIGMA
\yr 2012
\vol 8
\papernumber 087
\totalpages 23
\mathnet{http://mi.mathnet.ru/sigma764}
\crossref{https://doi.org/10.3842/SIGMA.2012.087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007272}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312378200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870040901}
Linking options:
  • https://www.mathnet.ru/eng/sigma764
  • https://www.mathnet.ru/eng/sigma/v8/p87
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :52
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024