Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 083, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.083
(Mi sigma760)
 

This article is cited in 3 scientific papers (total in 3 papers)

‘Magic’ configurations of three-qubit observables and geometric hyperplanes of the smallest split Cayley hexagon

Metod Sanigaa, Michel Planatb, Petr Pracnac, Péter Lévayd

a Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
b Institut FEMTO-ST, CNRS, 32 Avenue de l'Observatoire, F-25044 Besançon Cedex, France
c J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
d Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
Full-text PDF (334 kB) Citations (3)
References:
Abstract: Recently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012), 405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen–Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the $18_2-12_3$ and $2_414_2-4_36_4$ ones, can uniquely be extended into geometric hyperplanes of the split Cayley hexagon of order two, namely into those of types $\mathcal V_{22}(37;0,12,15,10)$ and $\mathcal V_4(49;0,0,21,28)$ in the classification of Frohardt and Johnson [Comm. Algebra 22 (1994), 773–797]. Moreover, employing an automorphism of order seven of the hexagon, six more replicas of either of the two configurations are obtained.
Keywords: ‘magic’ configurations of observables; three-qubit Pauli group; split Cayley hexagon of order two.
Received: June 22, 2012; in final form November 2, 2012; Published online November 6, 2012
Bibliographic databases:
Document Type: Article
MSC: 51Exx; 81R99
Language: English
Citation: Metod Saniga, Michel Planat, Petr Pracna, Péter Lévay, “‘Magic’ configurations of three-qubit observables and geometric hyperplanes of the smallest split Cayley hexagon”, SIGMA, 8 (2012), 083, 9 pp.
Citation in format AMSBIB
\Bibitem{SanPlaPra12}
\by Metod Saniga, Michel Planat, Petr Pracna, P{\'e}ter L{\'e}vay
\paper `Magic' configurations of three-qubit observables and geometric hyperplanes of the smallest split Cayley hexagon
\jour SIGMA
\yr 2012
\vol 8
\papernumber 083
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma760}
\crossref{https://doi.org/10.3842/SIGMA.2012.083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007276}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312377700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869069320}
Linking options:
  • https://www.mathnet.ru/eng/sigma760
  • https://www.mathnet.ru/eng/sigma/v8/p83
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:583
    Full-text PDF :152
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024