Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 082, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.082
(Mi sigma759)
 

This article is cited in 24 scientific papers (total in 24 papers)

Solutions of the Dirac equation in a magnetic field and intertwining operators

Alonso Contreras-Astorgaa, David J. Fernández C.a, Javier Negrob

a Departamento de Física, Cinvestav, AP 14-740, 07000 México DF, Mexico
b Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47071 Valladolid, Spain
References:
Abstract: The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a magnetic field with cylindrical symmetry whose intensity decreases as the distance to the symmetry axis grows and its field lines are parallel to the $x-y$ plane. It will be shown that the Hamiltonian under study turns out to be shape invariant.
Keywords: intertwining technique; supersymmetric quantum mechanics; Dirac equation.
Received: July 31, 2012; in final form October 17, 2012; Published online October 28, 2012
Bibliographic databases:
Document Type: Article
MSC: 81Q05; 81Q60; 81Q80
Language: English
Citation: Alonso Contreras-Astorga, David J. Fernández C., Javier Negro, “Solutions of the Dirac equation in a magnetic field and intertwining operators”, SIGMA, 8 (2012), 082, 10 pp.
Citation in format AMSBIB
\Bibitem{ConFerNeg12}
\by Alonso Contreras-Astorga, David J. Fern\'andez C., Javier Negro
\paper Solutions of the Dirac equation in a magnetic field and intertwining operators
\jour SIGMA
\yr 2012
\vol 8
\papernumber 082
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma759}
\crossref{https://doi.org/10.3842/SIGMA.2012.082}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007277}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312377600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869066744}
Linking options:
  • https://www.mathnet.ru/eng/sigma759
  • https://www.mathnet.ru/eng/sigma/v8/p82
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:884
    Full-text PDF :54
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024