Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 078, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.078
(Mi sigma755)
 

This article is cited in 3 scientific papers (total in 3 papers)

Frobenius 3-folds via singular flat 3-webs

Sergey I. Agafonov

Departmento de Matemática, Universidade Federal da Paraiba, João Pessoa, Brazil
Full-text PDF (492 kB) Citations (3)
References:
Abstract: We give a geometric interpretation of weighted homogeneous solutions to the associativity equation in terms of the web theory and construct a massive Frobenius $3$-fold germ via a singular $3$-web germ satisfying the following conditions: 1) the web germ admits at least one infinitesimal symmetry, 2) the Chern connection form is holomorphic, 3) the curvature form vanishes identically.
Keywords: Frobenius manifold; hexagonal $3$-web; Chern connection; infinitesimal symmetry.
Received: May 28, 2012; in final form October 17, 2012; Published online October 21, 2012
Bibliographic databases:
Document Type: Article
MSC: 53A60; 53D45; 34M35
Language: English
Citation: Sergey I. Agafonov, “Frobenius 3-folds via singular flat 3-webs”, SIGMA, 8 (2012), 078, 15 pp.
Citation in format AMSBIB
\Bibitem{Aga12}
\by Sergey I. Agafonov
\paper Frobenius 3-folds via singular flat 3-webs
\jour SIGMA
\yr 2012
\vol 8
\papernumber 078
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma755}
\crossref{https://doi.org/10.3842/SIGMA.2012.078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007281}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312373900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868130675}
Linking options:
  • https://www.mathnet.ru/eng/sigma755
  • https://www.mathnet.ru/eng/sigma/v8/p78
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :45
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024