Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 076, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.076
(Mi sigma753)
 

This article is cited in 8 scientific papers (total in 8 papers)

Recursion operators and Frobenius manifolds

Franco Magri

Dipartimento di Matematica ed Applicazioni, Università degli Studi di Milano Bicocca, Via Roberto Cozzi 53, 20125 Milano, Italy
Full-text PDF (249 kB) Citations (8)
References:
Abstract: In this note I exhibit a “discrete homotopy” which joins the category of F-manifolds to the category of Poisson–Nijenhuis manifolds, passing through the category of Frobenius manifolds.
Keywords: F-manifolds; Frobenius manifolds; Poisson–Nijenhuis manifolds.
Received: June 1, 2012; in final form October 5, 2012; Published online October 19, 2012
Bibliographic databases:
Document Type: Article
MSC: 35D45; 53D17; 37K10
Language: English
Citation: Franco Magri, “Recursion operators and Frobenius manifolds”, SIGMA, 8 (2012), 076, 7 pp.
Citation in format AMSBIB
\Bibitem{Mag12}
\by Franco Magri
\paper Recursion operators and Frobenius manifolds
\jour SIGMA
\yr 2012
\vol 8
\papernumber 076
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma753}
\crossref{https://doi.org/10.3842/SIGMA.2012.076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3007283}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312373400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868135425}
Linking options:
  • https://www.mathnet.ru/eng/sigma753
  • https://www.mathnet.ru/eng/sigma/v8/p76
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :56
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024