|
This article is cited in 2 scientific papers (total in 2 papers)
Sylvester versus Gundelfinger
Andries E. Brouwera, Mihaela Popoviciub a Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzerland
Abstract:
Let $V_n$ be the $\mathrm{SL}_2$-module of binary forms of degree $n$ and let
$V=V_1\oplus V_3\oplus V_4$. We show that the minimum number of generators of the algebra
$R = \mathbb C[V]^{\mathrm{SL}_2}$ of polynomial functions on $V$ invariant under the action of $\mathrm{SL}_2$ equals 63. This settles a 143-year old question.
Keywords:
invariants; covariants; binary forms.
Received: July 18, 2012; in final form October 12, 2012; Published online October 19, 2012
Citation:
Andries E. Brouwer, Mihaela Popoviciu, “Sylvester versus Gundelfinger”, SIGMA, 8 (2012), 075, 7 pp.
Linking options:
https://www.mathnet.ru/eng/sigma752 https://www.mathnet.ru/eng/sigma/v8/p75
|
Statistics & downloads: |
Abstract page: | 183 | Full-text PDF : | 45 | References: | 40 |
|