Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 064, 45 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.064
(Mi sigma741)
 

This article is cited in 1 scientific paper (total in 1 paper)

Classification of non-affine non-Hecke dynamical $R$-matrices

Jean Avana, Baptiste Billaudb, Geneviéve Rolleta

a Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise (CNRS UMR 8089), Saint-Martin 2, 2, av. Adolphe Chauvin, F-95302 Cergy-Pontoise Cedex, France
b Laboratoire de Mathématiques "Analyse, Géometrie Modélisation", Université de Cergy-Pontoise (CNRS UMR 8088), Saint-Martin 2, 2, av. Adolphe Chauvin, F-95302 Cergy-Pontoise Cedex, France
Full-text PDF (780 kB) Citations (1)
References:
Abstract: A complete classification of non-affine dynamical quantum $R$-matrices obeying the $\mathcal Gl_n(\mathbb C)$-Gervais–Neveu–Felder equation is obtained without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. It is shown that any solution is built upon elementary blocks, which individually satisfy the weak Hecke condition. Each solution is in particular characterized by an arbitrary partition $\{\mathbb I(i),i\in\{1,\dots,n\}\}$ of the set of indices $\{1,\dots,n\}$ into classes, $\mathbb I(i)$ being the class of the index $i$, and an arbitrary family of signs $(\epsilon_\mathbb I)_{\mathbb I\in\{\mathbb I(i),\,i\in\{1,\dots,n\}\}}$ on this partition. The weak Hecke-type $R$-matrices exhibit the analytical behaviour $R_{ij,ji}=f(\epsilon_{\mathbb I(i)}\Lambda_{\mathbb I(i)}-\epsilon_{\mathbb I(j)}\Lambda_{\mathbb I(j)})$, where $f$ is a particular trigonometric or rational function, $\Lambda_{\mathbb I(i)}=\sum_{j\in\mathbb I(i)}\lambda_j$, and $(\lambda_i)_{i\in\{1,\dots,n\}}$ denotes the family of dynamical coordinates.
Keywords: quantum integrable systems; dynamical Yang–Baxter equation; (weak) Hecke algebras.
Received: April 24, 2012; in final form September 19, 2012; Published online September 28, 2012
Bibliographic databases:
Document Type: Article
Language: English
Citation: Jean Avan, Baptiste Billaud, Geneviéve Rollet, “Classification of non-affine non-Hecke dynamical $R$-matrices”, SIGMA, 8 (2012), 064, 45 pp.
Citation in format AMSBIB
\Bibitem{AvaBilRol12}
\by Jean Avan, Baptiste Billaud, Genevi\'eve Rollet
\paper Classification of non-affine non-Hecke dynamical $R$-matrices
\jour SIGMA
\yr 2012
\vol 8
\papernumber 064
\totalpages 45
\mathnet{http://mi.mathnet.ru/sigma741}
\crossref{https://doi.org/10.3842/SIGMA.2012.064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2988030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309389700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867489017}
Linking options:
  • https://www.mathnet.ru/eng/sigma741
  • https://www.mathnet.ru/eng/sigma/v8/p64
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :54
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024