Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 046, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.046
(Mi sigma74)
 

This article is cited in 5 scientific papers (total in 5 papers)

Scale-Dependent Functions, Stochastic Quantization and Renormalization

Mikhail V. Altaiskyab

a Space Research Institute RAS, Profsoyuznaya 84/32, Moscow, 117997 Russia
b Joint Institute for Nuclear Research, Dubna, 141980 Russia
Full-text PDF (298 kB) Citations (5)
References:
Abstract: We consider a possibility to unify the methods of regularization, such as the renormalization group method, stochastic quantization etc., by the extension of the standard field theory of the square-integrable functions $\phi(b)\in L^2(\mathbb R^d)$ to the theory of functions that depend on coordinate $b$ and resolution $a$. In the simplest case such field theory turns out to be a theory of fields $\phi_a(b,\cdot)$ defined on the affine group $G:x'=ax+b$, $a>0,x,b\in\mathbb R^d$, which consists of dilations and translation of Euclidean space. The fields $\phi_a(b,\cdot)$ are constructed using the continuous wavelet transform. The parameters of the theory can explicitly depend on the resolution $a$. The proper choice of the scale dependence $g=g(a)$ makes such theory free of divergences by construction.
Keywords: wavelets; quantum field theory; stochastic quantization; renormalization.
Received: November 25, 2005; in final form April 7, 2006; Published online April 24, 2006
Bibliographic databases:
Document Type: Article
Language: English
Citation: Mikhail V. Altaisky, “Scale-Dependent Functions, Stochastic Quantization and Renormalization”, SIGMA, 2 (2006), 046, 17 pp.
Citation in format AMSBIB
\Bibitem{Alt06}
\by Mikhail V.~Altaisky
\paper Scale-Dependent Functions, Stochastic Quantization and Renormalization
\jour SIGMA
\yr 2006
\vol 2
\papernumber 046
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma74}
\crossref{https://doi.org/10.3842/SIGMA.2006.046}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2217755}
\zmath{https://zbmath.org/?q=an:1095.81040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100045}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234712}
Linking options:
  • https://www.mathnet.ru/eng/sigma74
  • https://www.mathnet.ru/eng/sigma/v2/p46
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :46
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024