Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 062, 33 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.062
(Mi sigma739)
 

This article is cited in 14 scientific papers (total in 14 papers)

Affine and finite Lie algebras and integrable Toda field equations on discrete space-time

Rustem Garifullina, Ismagil Habibullina, Marina Yangubaevab

a Ufa Institute of Mathematics, Russian Academy of Science, 112 Chernyshevskii Str., Ufa, 450077, Russia
b Faculty of Physics and Mathematics, Birsk State Social Pedagogical Academy, 10 Internationalnaya Str., Birsk, 452452, Russia
References:
Abstract: Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras $A_N$, $B_N$, $C_N$, $G_2$, $D_3$, $A_1^{(1)}$, $A_2^{(2)}$, $D^{(2)}_N$ these systems are proved to be integrable. For the systems corresponding to the algebras $A_2$, $A_1^{(1)}$, $A_2^{(2)}$ generalized symmetries are found. For the systems $A_2$, $B_2$, $C_2$, $G_2$, $D_3$ complete sets of independent integrals are found. The Lax representation for the difference-difference systems corresponding to $A_N$, $B_N$, $C_N$, $A^{(1)}_1$, $D^{(2)}_N$ are presented.
Keywords: affine Lie algebra; difference-difference systems; $S$-integrability; Darboux integrability; Toda field theory; integral; symmetry; Lax pair.
Received: April 24, 2012; in final form September 14, 2012; Published online September 18, 2012
Bibliographic databases:
Document Type: Article
MSC: 35Q53; 37K40
Language: English
Citation: Rustem Garifullin, Ismagil Habibullin, Marina Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 062, 33 pp.
Citation in format AMSBIB
\Bibitem{GarHabYan12}
\by Rustem Garifullin, Ismagil Habibullin, Marina Yangubaeva
\paper Affine and finite Lie algebras and integrable Toda field equations on discrete space-time
\jour SIGMA
\yr 2012
\vol 8
\papernumber 062
\totalpages 33
\mathnet{http://mi.mathnet.ru/sigma739}
\crossref{https://doi.org/10.3842/SIGMA.2012.062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2988032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309141300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867029853}
Linking options:
  • https://www.mathnet.ru/eng/sigma739
  • https://www.mathnet.ru/eng/sigma/v8/p62
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :91
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024