Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 029, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.029
(Mi sigma706)
 

Orbit representations from linear mod 1 transformations

Carlos Correia Ramosa, Nuno Martinsb, Paulo R. Pintob

a Centro de Investigação em Matemática e Aplicações, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
b Department of Mathematics, CAMGSD, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
References:
Abstract: We show that every point $x_0\in [0,1]$ carries a representation of a $C^*$-algebra that encodes the orbit structure of the linear mod 1 interval map $f_{\beta,\alpha}(x)=\beta x +\alpha$. Such $C^*$-algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map $f_{\beta,\alpha}$. Then we prove that such representation is irreducible. Moreover two such of representations are unitarily equivalent if and only if the points belong to the same generalized orbit, for every $\alpha\in [0,1[$ and $\beta\geq 1$.
Keywords: interval maps, symbolic dynamics, $C^*$-algebras, representations of algebras.
Received: March 14, 2012; in final form May 9, 2012; Published online May 16, 2012
Bibliographic databases:
Document Type: Article
MSC: 46L55, 37B10, 46L05
Language: English
Citation: Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto, “Orbit representations from linear mod 1 transformations”, SIGMA, 8 (2012), 029, 9 pp.
Citation in format AMSBIB
\Bibitem{RamMarPin12}
\by Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto
\paper Orbit representations from linear mod 1 transformations
\jour SIGMA
\yr 2012
\vol 8
\papernumber 029
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma706}
\crossref{https://doi.org/10.3842/SIGMA.2012.029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2942810}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304086600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84882305880}
Linking options:
  • https://www.mathnet.ru/eng/sigma706
  • https://www.mathnet.ru/eng/sigma/v8/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025