Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2012, Volume 8, 003, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2012.003
(Mi sigma680)
 

This article is cited in 6 scientific papers (total in 6 papers)

Supersymmetric proof of the Hirzebruch–Riemann–Roch theorem for non-Kähler manifolds

Andrei V. Smilga

SUBATECH, Université de Nantes, 4 rue Alfred Kastler, BP 20722, Nantes 44307, France
Full-text PDF (382 kB) Citations (6)
References:
Abstract: We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.
Keywords: index, Dolbeault, supersymmetry.
Received: November 10, 2011; in final form January 4, 2012; Published online January 8, 2012
Bibliographic databases:
Document Type: Article
MSC: 53C55; 53C80
Language: English
Citation: Andrei V. Smilga, “Supersymmetric proof of the Hirzebruch–Riemann–Roch theorem for non-Kähler manifolds”, SIGMA, 8 (2012), 003, 12 pp.
Citation in format AMSBIB
\Bibitem{Smi12}
\by Andrei V. Smilga
\paper Supersymmetric proof of the Hirzebruch--Riemann--Roch theorem for non-K\"ahler manifolds
\jour SIGMA
\yr 2012
\vol 8
\papernumber 003
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma680}
\crossref{https://doi.org/10.3842/SIGMA.2012.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2892332}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000299319700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856036817}
Linking options:
  • https://www.mathnet.ru/eng/sigma680
  • https://www.mathnet.ru/eng/sigma/v8/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025